Attach metadata to traces to track experiments, environments, and system configurations. This metadata is essential for comparing performance across different setups and analyzing patterns in your AI agent behavior.

Usage

from atla_insights import configure

# Define metadata for tracking experiments
metadata = {
    "model": "gpt-4o",
    "prompt": "customer-support-v2",
    "experiment": "support-optimization"
}

# All subsequent traces will inherit this metadata
configure(
    token="<MY_ATLA_INSIGHTS_TOKEN>",
    metadata=metadata,
)

Key Metadata Tags

Focus on these three essential metadata tags for effective experiment tracking:
TagPurposeExample Values
modelTrack different models and versions"gpt-4o", "claude-3-sonnet", "gpt-3.5-turbo"
promptVersion control for prompt templates"baseline", "optimized-v2", "few-shot-v1"
experimentGroup related experimental runs"react-agent", "tool-calling-agent", "few-shot-agent"

Experiment Comparison Examples

Model Comparison

Compare error rates across different models:
from atla_insights import configure

# Test with GPT-4
configure(
    token="<MY_ATLA_INSIGHTS_TOKEN>",
    metadata={
        "model": "gpt-4o",
        "prompt": "baseline",
    }
)
# Run your agent...

# Test with Claude
configure(
    token="<MY_ATLA_INSIGHTS_TOKEN>",
    metadata={
        "model": "claude-3-sonnet",
        "prompt": "baseline", 
    }
)
# Run your agent...

Prompt Optimization

Track different prompt versions:
from atla_insights import configure

# Baseline prompt
configure(
    token="<MY_ATLA_INSIGHTS_TOKEN>",
    metadata={
        "model": "gpt-4o",
        "prompt": "baseline",
    }
)
# Run your agent...

# Optimized prompt with examples
configure(
    token="<MY_ATLA_INSIGHTS_TOKEN>",
    metadata={
        "model": "gpt-4o",
        "prompt": "few-shot-v1",
    }
)
# Run your agent...